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We propose to investigate a flow of an aerocolloidal mixture of a gas with two par- 
ticulate fractions (small and large particles) within the scope of the assumptions of the 
mechanics of multiphase media [i], where the mixture of the gas and small particles can be 
regarded as a single-velocity, single-temperature continuum with its own specific thermo- 
physical properties (constituting the effective gas). We consider different methods of 
taking into account the influence of the small particles on the interaction between the ef- 
fective gas and the large particles, and we make a comparative analysis of these methods. 
We discuss certain results of calculations of shock structures in aerosols containing small 
and large particles. Previous papers report investigations of the structure of shock waves 
in a monodisperse aerocolloid containing inert particles [2] and in a gas-droplet mixture 
(including a polydisperse mixture) in the presence of phase transitions [3, 4]. Other studies 
have dealt with the influence of droplet breakup on flow in the relaxation zone of a shock 
wave [5] and the influence of the cooling of small particles on large droplets [6]. A de- 
tailed survey of papers on shock propagation in aerosols may be found in [7]. 

The formulation of the equation of motion of the investigated aerosol does not present 
any special difficulty within the framework of the stated assumptions. Here we give only 
the equations of state and the laws governing the interaction of the phases. 

i. EQUATIONS OF STATE 

We assume that the gas is calorically ideal and that the solid (particulate) phases are 
incompressible media with constant specific heats. We then write the equations of state of 
the effective gas and the large particles in the form 

p =p~RIT1 ,  el = clT~, e2 = c2T2, ( 1 . 1 )  

9~,  P~, Rg, % , , , c ~ , c 2  = const, 

where p, el, e2, TI, and T 2 are the pressure in the gas, the internal energies, and tempera- 
0 

0 plp, and p~ are the true densities of tures of the effective gas and the large particles, PI' 
the effective gas, the small particles, and the large particles, respectively, Rg is the gas 
constant, and CgV, c Ip, and c 2 are the specific heats of the gas (at constant volume) and 
the small and large particles. The thermophysical properties of the effective gas R I, c I and 
its true density p~ can be determined from the relations 

R 1 = x ~ R g ,  Cl = Xlgq,, + X~C~, XIe + Xl. = 1, 

x~ = ptg/pl,  Xip = P~/P l ,  Pl = P~g + P~p, Pl = ~lP~, 

~ + ~2 = I, ~2 = p2/p~, ~1 = ~ + ~. 

Here Pl, Plg, 01p, and P2 are the normalized densities of the effective gas, its two compo- 
nents, and the large particles, and ~i, ~ig, ~ip, and ~ are the corresponding contents of 
the components of the mixture by volume. We note that if phase transitions do not occur 
(Xlp, xlg = const) and the volume contents of the particles are small (~ip ( i, ~2 (I), 
the effeStive gas can be assumed to be calorically ideal [I]. 

2. ASPECTS OF THE SPECIFIC FORMULATION OF THE PHASE INTERACTION LAWS IN 

THE PRESENCE OF SMALL PARTICLES 

In determining the force f exerted on a large particle by the effective gas, we assume 
that it is the sum of two parts: the force of viscous friction with the gas f~ and the force 
associated with momentum transfer in collisions with small particles fc, i.e., 
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We write the force fB 

f =A + L. (2. i )  

of interaction of a large particle with the gas in the form [i, 7] 

/ ,  = ( ~ d ~ / 8 )  p%C,, I v~ - v2 1 (V~ - +,~), ( 2 . 2 )  

Ca = 2 4 / R e u  + 4,4/Re~] + 0,42, Re12 = p~d lvx - v2 ]/~t~, 

where d, Cd, " and Rel2 are the diameter, drag coefficient, and Reynolds number of the relative 
flow around the particle, vl and v2 are the velocities of the gas and the large particles, and 
~ig is the dynamic viscosity coefficient of the gas. 

By analogy with [I], we determine the interaction force between small and large par- 
ticles on the assumption that the small particles acquire the velocity of the large particles 
after collision, i.e., the excess momentum of the small particles mp(vl- v2) (mp is the small 
particle mass) is transferred in collisions. We find the number of particle collisions, 
starting with the elementary scheme in [I, 6, 8], introducing the correction factor q, which 
characterizes the fraction of small particles colliding with a large particle (the remaining 
fraction 1 - q corresponds to particles that intermingle with the gas flow and move with it 
toward the head of the large particle, but do not collide with it). We then write the ex- 
pression for fc in the form 

~ = ~ (~d2/4) p~ [Vl - v2 f (v, - v2), 0 ~ 1 .  ( 2 . 3 )  

The particle collision efficiency q depends on many factors in general (the size and mass 
contents of small and large particles, their relative velocity, the viscosity of the gas, 
etc.). Obviously, when the size and concentration of the small particles are small, the co- 
efficient q depends on the dimensionless parameter St = s is the Stokes number (~v is a 
characteristic relaxation length of the velocity of a small particle in Stokes flow). A 
simple empirical relation is given in [9]: 

q(st) = st2/(st +0,125) 2, st ~0, I. (2.4) 

In cases where the motion of the small particles doesnot obey Stokes' law or their concentra- 
tion is not small (and the influence of the particles on the gas flow can no longer be ig- 
nored), it is difficult to evaluate the factor q (this is a separate and fairly complicated 
problem). 

It should be noted that the influence of the small particles on the force interaction 
of the phases can sometimes be taken approximately into account by writing the expression for 
the force of the effective gas on a large particle in a form analogous to (2.2) (with the 
actual parameters of the gas replaced by the effective parameters of the mixture of the gas 
with the small particles): 

/e = (~d~/8) P?G Iv, - v~ I (v, - v,), (2 .  s) 
24/Re~2 + 4.4/~ee~2 + 0.42, R~2 p?d Iv, - v, [ / , ,  

(~l is the v iscos i ty  coeff ic ient of the effect ive gas, Which can be'regarded as equal to the 
dynamic v iscosi ty  coeff ic ient of the gas in the case of not too highly concentrated aerocol- 
loids: ~l ~ ~Ig)- A comparative analysis of the forces f~, fc, and fe is carried out below. 

We represent the incoming heat f lux from the carr ier phase to a large part ic le by the 
expression [1, 7] 

q =  ~dkg Nu12 (TI - T2), ( 2 . 6 )  

N~,: = 2 + 0.6 Re~ P~< P~ = ~ .~ /X~ .  

Here Nut2 and Prg are the Nusselt and Prandtl numbers, cgp is the specific heat of the gas 
at constant pressure, and lg is its thermal conductivity. Equation (2.6)is written under 
the assumption that the time of contact between the particles during collisions (when they 
do not stick together)is sufficiently small in comparisonwith the characteristic time of 
heat transfer between them, so that the influence of the small particles on the heat-transfer 
process between the gas and the large particles can be disregarded. 

3. ANALYSIS OF THE FORCE EXERTED BY THE EFFECTIVE GAS ON A LARGE PARTICLE 

We carry out a comparative analysis of the forces applied to a large particle by the 
effective gas. To simplify the estimates, we assume that the collision efficiency is con- 
stant: q = const. 
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0 From Eqs. (2.2) and (2.3) we readily deduce the relation fc = (2~plp/PlgCd)fp. We 
therefore have the following relation for the cases of Stokes (Re12 < I, C d = 24/Re12) and 
Newtonian (Re12 ~ i, C d ~ 0.5) flow of a not too highly concentrated small-particle aero- 
colloid (alp ~ i, ~ig = I) around the large particle: 

[qmlp Reu/12, R e u < < l ,  

(mzp i s  t h e  r e l a t i v e  mass  c o n t e n t  o f  s m a l l  p a r t i c l e s  in  t h e  e f f e c t i v e  g a s ) .  C l e a r l y ,  i n  
S t o k e s  f l o w  o f  a gas  m i x t u r e  w i t h  n o t  v e r y  l a r g e  mass  c o n t e n t s  o f  s m a l l  p a r t i c l e s  (mlp  ~ 10) 
we can  assume t h a t  f c  ~ f~ and d i s r e g a r d  t h e  f o r c e  f c  in  t h e  c a l c u l a t i o n s .  

The c o m p a r i s o n  o f  fu  and f c  f o r  t h e  c a s e  o f  N e w t o n i a n  f l o w  i s  i l l u s t r a t e d  in  F i g .  1. 
Curve  a c o r r e s p o n d s  t o  v a l u e s  o f  mlp and ~ f o r  wh ich  t h e  r a t i o  o f  t h e  f o r c e s  f c  and f~ i s  
f c / f ~  ~ 4nmlp ~ 1. The h o r i z o n t a l  l i n e s  a '  and a"  i n d i c a t e  t h e  b o u n d a r i e s  o f  t h e  domain in  
t h e  (ml~ , D) p l a n e  w h e r e i n  t h e  r e l a t i o n  0 .1  ~ f c / f ~  5 10 h o l d s .  The s l o p i n g  l i n e s  c o r r e s p o n d  
to the aependence of fc/f~ on mid for different values of n. Clearly, in Newtonian flow 
around the large particle (as opposed to Stokes flow) the condition fc ~ f~ is satisfied only 
for values of m~p and D within the narrow zone below the line a". For D ~ 0.05 and mlp ~ 0.5 
the force fc becomes comparable with or much greater than f~ in magnitude. 

We now compare the different representations of the force exerted by the effective gas 
on a large particle f = f~ + fc and fe. From Eqs. (2.1)-(2.3), (2.5) we readily obtain the 
relation 

F = f~p?/(2~p~p + C~p%). ( 3 . 1 )  

T r e a t i n g  s e p a r a t e l y  t h e  c a s e s  o f  S t o k e s  (Re~2 , Re?2 ~ 1) a n d N e w t o n i a n  (Rez2,  Re~2 i~ 1) f l o w  
o f  a n o t  t o o  h i g h l y  c o n c e n t r a t e d  s m a l l - p a r t i c l e  a e r o c o l l o i d  a r o u n d  l a r g e  p a r t i c l e s  (when i t  
can  be assumed t h a t  ~zp ~ 1, ~lg ~ 1, and ~i ~ ~ l g ) ,  f rom Eq. ( 3 . 1 )  we o b t a i n  

f 
[(1 + mip)/(1 + 4~ma), Reu >> 1. 

I t  f o l l o w s  f rom t h i s  r e s u l t  t h a t  f o r  s u f f i c i e n t l y  s m a l l  R e y n o l d s  n u m b e r s ,  when Re~2 ~ 1/  
(m~p + 1 ) ,  i t  can  a l m o s t  a l w a y s  be assumed t h a t  f e  ~ f ,  i . e . ,  t h e  d i f f e r e n t  r e p r e s e n t a t i o n s  
o f  t h e  f o r c e  o f  t h e  e f f e c t i v e  gas  on a l a r g e  p a r t i c l e  a c c o r d i n g  t o  g q s .  ( 2 . 1 )  and (21.5) y i e l d  
a p p r o x i m a t e l y  t h e  same v a l u e s .  

The b e h a v i o r  o f  t h e  r a t i o  f e / f  as  a f u n c t i o n  o f  t h e  mass  c o n t e n t  o f  s m a l l  ~ a r t i c ! e s  mlp 
f o r  R e ~  ~ 1 i s  shown in  F i g .  2. We s e e  t h a t  t h e  v a l u e s  g i v e n  by Eq. ( 2 . 5 ) ,  which  i s  u s e d  
t o  c a i c u l a t e  t h e  e f f e c t i v e  f o r c e  f e ,  a r e  t o o  h i g h  f o r  ~ > 0 .25  and ,  c o n v e r s e l y ,  a r e  t o o  low 
f o r  ~ < 0 .25  in  c o m p a r i s o n  w i t h  t h e  r e s u l t s  g i v e n  by Eq. ( 2 . 1 ) ,  where  t h e  i n f l u e n c e  o f  t h e  
s m a l l  p a r t i c l e s  on t h e  f o r c e  e x e r t e d  by t h e  e f f e c t i v e  gas  on a l a r g e  p a r t i c l e  i s  t a k e n  i n t o  
a c c o u n t  more s u b t l y .  I t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  f and f e  a r e  e q u a l  a t  ~ = 0 . 2 5 :  f = f e ,  
r e g a r d l e s s  o f  t h e  v a l u e  o f  map. 

We n o t e  t h a t  a s i g n i f i c a n t  d i f f e r e n c e  ( t w o f o l d  o r  more )  be tween  t h e  v a l u e s  o f  f and f e  
i s  o b s e r v e d  in  t h e  f o l l o w i n g  i n t e r v a i s  o f  t h e  p a r a m e t e r s  ~ and mtp: ~ ~ ( m a  - l ) /8m~,  ma ~ 1 and 

~ ( m ~ + 0 . 5 ) / 2 m ~ , m ~  0 . 5 .  i 

As an exampl e  i l l u s t r a t i n g  t h e  i n f l u e n c e  o f  i n t e r a c t i o n  be tween  s m a l l  a n d  l a r g e  p a r t i c l e s  
on the flow of a two-fraction (i.e., with two distinct particle sizes) aerosol, we consider 
the structure of a shock wave. 

4. STATEMENT OF THE PROBLEM AND RESULTS OF CALCULATIONS 

Let a plane stationary shock wave propagate with a velocity v10 in an unbounded space 
occupied by a mixture of a gas with small and large particles, and let v10 > aCt0, a~ ~, where 
a?0 and a~ are the preshock equilibrium sound velocities in the mixture of the gas with the 
small particles and in the complete aerosol with small and large particles (a~ < a~0 < alg0, 
where the latter is the sound velocity in the particle-free gas). The shock wave can be 
fronted by a discontinuity, at which the parameters of the effective gas satisfy the Rankine- 
Hugoniot equations, and the parameters of the large particles are practically constant. The 
parameters of the components of the mixture after the discontinuity determine the boundary 

631 



45 

/ 
_r t/=O 

/ . . . 4 2 _  
~ O,3 
~ o.4 

1,o 

5 mlp 0 5 

Fig. i Fig. 2 

'~ i a 

z,O 

I,o 

% 

0 (2, 25 ~,m 0 0,25 :c, m 

i# 

P1 9 

m~ 

Fig. 3 

conditions at a certain point x = xf corresponding to the position of the frontal discontinu- 
ity (compression shock) and can be used to calculate the structure of the relaxation zone 
in the region x > xf. 

When a~ < v10 < a~0, the shock wave is not fronted by a discontinuity, i.e., the para- 
meters of the mixture in the compression wave vary continuously from the preshock equilibrium 
state to the postshock equilibrium state. In this case the linear solution of the system of 
equations of motion of the mixture in the vicinity of the initial preshock state can be used 
to formulate the boundary conditions. A ranging technique has been used in previous works 
[3, 4] to calculate the structures of continuous (smeared) shock waves. More comprehensively 
definition of a problem concerning the structure of the shock wave in suspension of matter in 
gas is considered in [i, 7]. 

An analysis of the conditions of similarity of shock wave structures has shown that the 
following dimensionless parameters are the main criteria of approximate flow similarity in the 
relaxation zone of the shock wave when collisions occur between small and large particles 
with a constant efficiency q: the adiabatic exponent of the gas ~g, the Mach number of the 
shock wave relative to the sound velocity in the gas M = v10/alg0, the ratio of the specific 
heats of the small particles and the gas Cp = Cp/Cg V, the relative preshock mass contents of 
small and large particlesmzp : Pzp0/Plg0 andm 2= P20/Pzg0, and the collision efficiencyq. When 
q is variable and depends on St, it is replaced in the set of similarity criteria by the 
characteristic value of the Stokes number (relative to the sound velocity in the gas) St0s = 

~ ~tEq. (2.4) is used to describe the p~pd~alg0,/18dplg (dp is the small particle iamet "ua ~ 
function q(St), the efficiency clearly obey the " q " y q > 0.8 and depends weakly on St 
for St ~ i. Since St = kRe12/18 (~n 0 2 0 2 ~ ~. = plpdp/plgd ), we can assume approximately that q 8-i 
in the shock wave, where Re12 ~ ~vs for not too small values of k (such that k Rel2 ~ 20 j- 

The invariance of the parameter St0s, required for approximate similarity of the shock struc- 
tures, is no longer essential. 

We have investigated the influence of particle interaction and the main governing param- 
eters on the structure of a shock wave in a mixture of air with small and large particles 
of quartz sand. We assume that the preshock mixture is in thermodynamic equilibrium (v10 = 
v20, T10 = T20) at a pressure of 0.i MPa. The equations of motion of the aerosol with the 
closing relations (i.i), (2.1)-(2.6) and appropriate boundary conditions are integrated numer- 
ically by a modified Euler method. The computational error is checked against satisfaction 
of the first integrals of mass, momentum, and energy. The calculations are carried out for 
waves with relative velocities M = v10/alg 0 = 0.6-2. 
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The relative mass contents of small and large particles mlp and m 2 are varied from 0.5 
to 2. The large particle diameter d is varied in the range from 50 ~m to 200 ~m. The ef- 
ficiency D is assumed to be constant and is varied from 0 to 1 (D = 0 corresponds to com- 
pletely noninteracting particles). 

Some results of the calculations are shown in Figs. 3 and 4. The influence of different 
representations of the interaction force between the effective gas and large particles on the 
shock structure is illustrated in Fig. 3 (everywhere Pi = Pi/Plg0, vi = vi/alg0, P = P/P0, and 
Ti = Ti/Tl0, i = i, 2). The dashed curves indicate the behavior of the parameters of the 
phases when the particle interaction force is calculated according to Eq. (2.5), and the 
solid curves represent the same for Eq. (2.1). Here M = 2, mlp = m 2 = i, d = 200 ~Jm, and ~ = 
0.8. We see that the use of different equations for f with the indicated values of the 
governing parameters mainly affects the density and the velocity (Fig. 3a and 3b) of the large 
particles, where Eq. (2.5) gives high values for the density and low values for the velocity 
in comparison with Eq. (2.1) over the entire length of the relaxation zone. These disparities 
are attributable to the fact, obvious from Fig. 2, that for Rel2 ~ 1 (as prevails in a shock 
wave), D - - 0.8, and mlp ~ 1 the approximate ratio of the forces f and fe calculated according 
to Eqs. (2.1) and (2.5), respectively, is fe/f ~ 0.5. 

Figure 4 illustrates the influence of the efficiency n of collisions between small and 
large particles on the distribution of the phase parameters in the relaxation zone of a shock 
wave with a relative velocity M = 2 for mlp = i, m 2 = I, and d = 200 ~m. The dashed, dot- 
dash, and solid curves correspond to N = 0, 0.5, 0.8. The increase of ~ from 0 to 0.8 causes 
the large particle velocity v 2 to decrease considerably, and their density P2 to increase. 
This is attributable to the fact that the interaction force between the phases increases with 

as a result of the increasing rate of collisions between small and large particles. In 
this case the large particles after the shock front slow down more rapidly, and their concen- 
tration increases. In regard to the parameters of the effective gas, they do not undergo any 
appreciable variation in the relaxation zone of the shock wave as ~ increases. 
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SPECTRAL COMPOSITION OF WAVE NUMBERS OF LONGITUDINAL VORTICES AND 

CHARACTERISTICS OF FLOW STRUCTURE IN A SUPERSONIC JET 

V. I. Zapryagaev, S. G. Mironov, 
and A. V. Solotchin 

UDC 533.6.011 

Azimuthal nonuniformities of the distribution of the gasdynamic parameters have been 
discovered in the supersonic jet issuing from an axisymmetric nozzle in the off-design re- 
gime [1-5]. The absence of explanations for the described phenomenon in the works on jets 
[6-7] indicates the inadequate level of our knowledge of the structure of the supersonic 
jet. The existence of azimuthal nonuniformities in the initial segment of the jet has been 
identified, both with the aid of schlieren photographs, on which longitudinal bands are seen, 
and by direct measurement of the azimuthal distribution of the total pressure in the flow. 
These nonuniformities show up in jets issuing from nozzles of various dimensions with various 
gasdynamic parameters, indicating the high frequency of occurrence of this phenomenon, which 
is observed both in rarefied gas jets [i-2] and in jets at high Reynolds numbers [3-5]. The 
reproducibility of this phenomenon is confirmed by experiments [8], the results of which 
basically agree with the conclusions published in [3-5]. The possible cause for the onset 
of the observed azimuthal nonuniformity may be the coherent vortical formations of the Taylor- 
Gortler vortex type [3-5] in the shear layer of the jet discharging into a submerged space. 
This hypothesis is based on comparison of the experimental observations in free jets with the 
data from the recording of longitudinal vortices in the case of the attachment of both plane 
[9, I0] and axisymmetric [ii, 12] flows. In the case of the discharge of an axisymmetric 
supersonic jet into a coaxial cylindrical channel with sudden expansion, it is noted that the 
"primary cause of the formation of longitudinal vortices is loss of stability of the boundary 
layer upon abrupt rotation of this layer, when the equilibrium between the centrifugal forces 
and the pressure forces is disrupted" [ii]. Longitudinal vortical structures have also been 
observed in the zone of interaction of the supersonic jet with a liquid [12]. The vortical 
motion intensifies the mass exchange of the jet with the ambient medium, significantly alters 
the azimuthal and radial distributions of the total pressure and the Mach number, and also 
influences the configuration of the jet boundary. The inadequate level of our knowledge of 
the subject questions leads to the need for further studies of the conditions of the onset and 
transformation of three-dimensional disturbances in the shear layer of the supersonic jet. 
An analytic description of the Taylor--Gortler instability in supersonic jets in application 
to the existing experimental data was presented in [13-16]. 

In the present work we made a broad experimental study of the observed phenomenon, in- 
cluding probe measurements of the variations of the total pressure, the obtaining of data on 
the spectral composition of the wave numbers of the spatial nonuniformities, and laser visual- 
ization of the jet cross section. 

i. The experiments were performed on a jet facility with use of the equipment described 
in [3-5]. The most significant difference between the present study and that performed pre- 
viously lies in the use of a rotating nozzle, which made it possible to obtain data on the 
nature of the azimuthal nonuniformities in the entire jet flow field. In [3-5] the azimuthal 
angle variation range was 57 ~ , in the present work the range was 360 ~ . Other differences in 
the measurement technique will be noted below. The phenomenon was studied on an underexpanded 
supersonic air jet, discharging from an axisymmetric conical nozzle with exit section diameter 
d a = 0.02 m into a submerged space. The Mach number of the jet at the nozzle exit was M a = 
1.5, and the degree of off-design (ratio of the pressure at the nozzle exit to the external 
pressure) was 4.15. The Reynolds number, based on the characteristic velocity of the jet at 
the nozzle exit, the dynamic viscosity in the submerged space, and the length of the first cell 
of the underexpanded jet, was 3.6"i06. 
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